pagoda2 - Single Cell Analysis and Differential Expression
Analyzing and interactively exploring large-scale single-cell RNA-seq datasets. 'pagoda2' primarily performs normalization and differential gene expression analysis, with an interactive application for exploring single-cell RNA-seq datasets. It performs basic tasks such as cell size normalization, gene variance normalization, and can be used to identify subpopulations and run differential expression within individual samples. 'pagoda2' was written to rapidly process modern large-scale scRNAseq datasets of approximately 1e6 cells. The companion web application allows users to explore which gene expression patterns form the different subpopulations within your data. The package also serves as the primary method for preprocessing data for conos, <https://github.com/kharchenkolab/conos>. This package interacts with data available through the 'p2data' package, which is available in a 'drat' repository. To access this data package, see the instructions at <https://github.com/kharchenkolab/pagoda2>. The size of the 'p2data' package is approximately 6 MB.
Last updated 9 months ago
scrna-seqsingle-cellsingle-cell-rna-seqtranscriptomics
8.27 score 209 stars 278 scripts 762 downloadsconos - Clustering on Network of Samples
Wires together large collections of single-cell RNA-seq datasets, which allows for both the identification of recurrent cell clusters and the propagation of information between datasets in multi-sample or atlas-scale collections. 'Conos' focuses on the uniform mapping of homologous cell types across heterogeneous sample collections. For instance, users could investigate a collection of dozens of peripheral blood samples from cancer patients combined with dozens of controls, which perhaps includes samples of a related tissue such as lymph nodes. This package interacts with data available through the 'conosPanel' package, which is available in a 'drat' repository. To access this data package, see the instructions at <https://github.com/kharchenkolab/conos>. The size of the 'conosPanel' package is approximately 12 MB.
Last updated 9 months ago
batch-correctionscrna-seqsingle-cell-rna-seq
7.61 score 199 stars 254 scripts 573 downloadsnumbat - Haplotype-Aware CNV Analysis from scRNA-Seq
A computational method that infers copy number variations (CNVs) in cancer scRNA-seq data and reconstructs the tumor phylogeny. 'numbat' integrates signals from gene expression, allelic ratio, and population haplotype structures to accurately infer allele-specific CNVs in single cells and reconstruct their lineage relationship. 'numbat' can be used to: 1. detect allele-specific copy number variations from single-cells; 2. differentiate tumor versus normal cells in the tumor microenvironment; 3. infer the clonal architecture and evolutionary history of profiled tumors. 'numbat' does not require tumor/normal-paired DNA or genotype data, but operates solely on the donor scRNA-data data (for example, 10x Cell Ranger output). Additional examples and documentations are available at <https://kharchenkolab.github.io/numbat/>. For details on the method please see Gao et al. Nature Biotechnology (2022) <doi:10.1038/s41587-022-01468-y>.
Last updated 2 months ago
cancer-genomicscnv-detectionlineage-tracingphylogenysingle-cellsingle-cell-analysissingle-cell-rna-seqspatial-transcriptomics
7.16 score 166 stars 110 scripts 394 downloadssccore - Core Utilities for Single-Cell RNA-Seq
Core utilities for single-cell RNA-seq data analysis. Contained within are utility functions for working with differential expression (DE) matrices and count matrices, a collection of functions for manipulating and plotting data via 'ggplot2', and functions to work with cell graphs and cell embeddings. Graph-based methods include embedding kNN cell graphs into a UMAP <doi:10.21105/joss.00861>, collapsing vertices of each cluster in the graph, and propagating graph labels.
Last updated 9 months ago
6.47 score 12 stars 9 packages 34 scripts 1.8k downloadsN2R - Fast and Scalable Approximate k-Nearest Neighbor Search Methods using 'N2' Library
Implements methods to perform fast approximate K-nearest neighbor search on input matrix. Algorithm based on the 'N2' implementation of an approximate nearest neighbor search using hierarchical Navigable Small World (NSW) graphs. The original algorithm is described in "Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs", Y. Malkov and D. Yashunin, <doi:10.1109/TPAMI.2018.2889473>, <arXiv:1603.09320>.
Last updated 9 months ago
5.08 score 10 stars 2 packages 3 scripts 721 downloadsscistreer - Maximum-Likelihood Perfect Phylogeny Inference at Scale
Fast maximum-likelihood phylogeny inference from noisy single-cell data using the 'ScisTree' algorithm by Yufeng Wu (2019) <doi:10.1093/bioinformatics/btz676>. 'scistreer' provides an 'R' interface and improves speed via 'Rcpp' and 'RcppParallel', making the method applicable to massive single-cell datasets (>10,000 cells).
Last updated 1 years ago
evolutionphylogeneticssingle-cell
3.95 score 6 stars 1 packages 2 scripts 273 downloads