Package: N2R 1.0.3

Evan Biederstedt

N2R: Fast and Scalable Approximate k-Nearest Neighbor Search Methods using 'N2' Library

Implements methods to perform fast approximate K-nearest neighbor search on input matrix. Algorithm based on the 'N2' implementation of an approximate nearest neighbor search using hierarchical Navigable Small World (NSW) graphs. The original algorithm is described in "Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs", Y. Malkov and D. Yashunin, <doi:10.1109/TPAMI.2018.2889473>, <arxiv:1603.09320>.

Authors:Peter Kharchenko [aut], Viktor Petukhov [aut], Dirk Eddelbuettel [ctb], Evan Biederstedt [cre, aut]

N2R_1.0.3.tar.gz
N2R_1.0.3.zip(r-4.5)N2R_1.0.3.zip(r-4.4)N2R_1.0.3.zip(r-4.3)
N2R_1.0.3.tgz(r-4.4-x86_64)N2R_1.0.3.tgz(r-4.4-arm64)N2R_1.0.3.tgz(r-4.3-x86_64)N2R_1.0.3.tgz(r-4.3-arm64)
N2R_1.0.3.tar.gz(r-4.5-noble)N2R_1.0.3.tar.gz(r-4.4-noble)
N2R.pdf |N2R.html
N2R/json (API)

# Install 'N2R' in R:
install.packages('N2R', repos = c('https://kharchenkolab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kharchenkolab/n2r/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

5.08 score 10 stars 2 packages 3 scripts 721 downloads 2 exports 5 dependencies

Last updated 9 months agofrom:aaf8ac4ee7. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-win-x86_64OKNov 22 2024
R-4.5-linux-x86_64OKNov 22 2024
R-4.4-win-x86_64OKNov 22 2024
R-4.4-mac-x86_64OKNov 22 2024
R-4.4-mac-aarch64OKNov 22 2024
R-4.3-win-x86_64OKNov 22 2024
R-4.3-mac-x86_64OKNov 22 2024
R-4.3-mac-aarch64OKNov 22 2024

Exports:crossKnnKnn

Dependencies:latticeMatrixRcppRcppEigenRcppSpdlog